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The basis of biological computation is the reaction or regulatory network. How are
such networks discovered by selection-mutation processes?

The Utrecht Machine (UM) is a discrete abstraction of a gene regulatory network.
For this project, an evolutionary simulation is used to discover UM-based agents
that solve a data encoding problem.

UM State: Table mapping patterns p to integer activation levels Ap.

• Ap is metaphorically how many units of protein p are present

Reaction instruction: As > θ =⇒ incAp, decAq

• s : switch pattern; θ : threshold

• p : pattern to activate, p-up; q : pattern to inhibit, p-down

• If As > θ then add 1 to Ap and subtract 1 from Aq

• All instructions performed simultaneously in discrete time steps

• Encoded as a binary genome and subject to mutation and recombination

Channels: A bit of input is provided by increasing the activation of a particular
pattern during each time step the input bit is set.

FYI: I call it the Utrecht Machine because the conference where I first presented it was

EvoLang 2010 in Utrecht.



Experimental task: Transmit 2 bits over time

Use a selection-mutation process to evolve solutions to a sequential coding problem.
A genome is built into an agent follows: Two UMs are built from the genome, one
sender and one receiver. The sender gets two bits of input, plus constant input into
its role pattern 1. The receiver must generate two bits of output that reproduce the
input, and signal when to stop. The receiver gets input from the sender through a
single synapse, plus constant input into its role pattern 2.

Sketch of agent & scoring details
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Each agent is presented with all
four possible input words 〈00〉, 〈10〉,
〈01〉, 〈11〉, starting at a zero state
for each and running for up to 100
time steps. It earns 10, 000 points for
each bit correctly transmitted, plus
100 − max(20, t) each time it stops af-
ter t steps. Maximum possible score:
10, 000× 4× 2 + 80× 4 = 80, 320.



Example evolved solution
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An evolved solution (above) and its synaptic code
(right).
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Genetic encoding

• Each instruction⇔ one gene

• Integers represented by Gray code

• Further majority-of-three redundant encoding

Supported mutations

1 0 0 1 → 1 1 0 1
single bit substitutions
prob 0.005 per genome bit

→ ✂

gene (instruction) deletion
prob 0.001 per gene

→
gene (instruction) duplication
prob 0.001 per gene



Recombination processes

Genetic recombination accelerates discovery of reaction networks. Nature uses
many recombination mechanisms. Do the details matter?

Recombination variant: haploid crossover

Agents have a single chromosome. Chromosomes
from each parent are aligned at the beginning and
split at a random location. The first part of one is
attached to the second part of the other to form the
child chromosome.

Recombination variant: diploid crossover

Agents have pairs of chromosomes. These are
mixed and matched within each parent, then each
parent contributes one mixed chromosome to the
child pair.



Genome configurations

Genome configurations are specified by how
many bundles of chromosomes (#b), how
many chromosomes per bundle (#c), and how
many genes initially present in each chro-
mosome (#g). Crossover is haploid for 1c
configurations, diploid for 2c.

1. Haploid configuration: 1b 1c 32g

2. Short diploid configuration: 1b 2c 16g

3. Long diploid configuration: 1b 2c 32g

In diploid genomes, genes come in pairs, and recombination increases the
chances of having similar genes in each pair locus. So due to dynamics, a
diploid genome has less effective information capacity than a haploid genome
with the same number of genes but unpaired loci. So we’ll test these two
diploid configurations against one haploid configuration.

Initially, each agent in the Haploid configuration 1b 1c 32g has a total of 32
genes and 32 loci. In the Short diploid configuration 1b 2c 16g, each agent
initially has 32 genes but 16 pair loci. In the Long diploid configuration
1b 2c 32g, each agent initially has 32 pair loci but 64 genes total.

Genome lengths change over time due to gene duplication and deletion muta-
tions. The resulting genomes can vary in length over orders of magnitude.



Aggregate analysis

• Look at 1000 sample runs using each genome configuration

• Results reported by medians and on log-scale
(less sensitive to extreme outliers)

Time to first perfect solution
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Decile charts for the number of
agents searched before finding one
that scores perfectly, logarithmic
scale. Diploid configurations have
wider spread but fewer extreme
outliers. Haploid configuration has
distinctly lower median.



Genome size of first perfect solution

Decile charts for total number of
genes in first perfect solution, loga-
rithmic scale.

Medians
Haploid 39

Short diploid 63
Long diploid 90
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Haploid gives shortest on average, which is to be expected since diploid config-
urations tend toward redundancy. But the diploid runs are not simply twice as
long: Median length under short diploid is less than twice as long as haploid,
but under long diploid is more than twice as long.

Genomes spontaneously accumulate significant length under diploid configura-
tions for reasons that are not yet known.



Efficacious network size of first perfect solution

Genes connected directly or indirectly to output channels are called efficacious
and form the regulatory network of interest. Other genes have no regulatory
purpose and are called inefficacious.

Decile charts for number of effica-
cious genes in first perfect solution,
logarithmic scale.

Medians
Haploid 10

Short diploid 16
Long diploid 20.5
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Overall, the haploid configuration yields smaller efficacious networks. Median
count of efficacious genes under short diploid configuration is less than twice as
many as haploid; under long diploid, just above twice as many.



Innovations through outliers

During the long equilibrium phases, most of the
population hovers near the peak of a ridge in
the fitness landscape. Genetic diversity ensures
that there are always a few outliers that don’t
achieve the highest score present in the popula-
tion at that time. But they are more likely to be
near the edge of the basin of attraction of the
ridge, in which case their offspring are more
likely to jump to another ridge—an innovation.

Chart of how many sample runs
had n major innovations where
at least one parent is an outlier.

Under diploid configurations,
more samples have at least one
such major innovation.
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Case studies: Dynamics & genetic diversity

• Look at a few sample runs in detail

• Look at many agents from the same population
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⇐ Rating trajectory charts
In each generation, agents have a variety of scores between 0
and 80320. Most of the score comes from the communication
task. These charts show the distribution of these correctness
scores as stacked bars, every 10 generations.

Alignment distribution charts ⇒
The bitstring genomes in each generation can be compared
pairwise using the Smith-Waterman string alignment & scor-
ing algorithm (high alignment score ⇔ similar strings).
These charts show the distribution of alignment scores, ev-
ery 10 generations.

The graph at the bottom shows the highest rating achieved
by any agent so far, not to scale. An innovation occurs when
a new agent correctly transmits more bits than any that pre-
ceded it. Its rating is much higher, shown as a jump. ⇒
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Haploid
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Each time an innovation is discovered, its descendants take over the popu-
lation, resulting in a temporary decrease in diversity and spike in alignment
scores (the “founder” effect). Since reproduction is binary, there can be a long
delay between the innovation and the time it saturates the population with a
large proportion of high-scoring descendants. The loss of diversity continues
past the time of saturation. Greater diversity increases the probability that an
innovation will be discovered. Sometimes a second innovation is discovered be-
fore the re-founding.
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Short diploid
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Diploid genome configurations usually lead to an overall upward drift in
genome length and therefore in alignment scores. It also makes sense to exam-
ine self-alignment, how well one chromosome matches the other in its bundle:
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Long diploid
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This sample run develops spread in self-alignment before the last innovation
reaches saturation:
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Genome organization

After finding the first perfectly scoring agent, evolution continues due to im-
plicit pressures (ex: robustness against mutation). Sometimes the genome
evolves to include spatial organization. Paired chromosomes become more sim-
ilar. The sender mechanism becomes smaller. Genes for the sender mechanism
become a cluster, separated from the larger receiver mechanism.

From the short diploid example, which happened to be especially clear:
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